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Why do we need multivariable
analysis?

“Treatment * for the confounding
effects at analytical level

Stratification by confounder(s)
Multivariable / multiple analysis

Prediction of individual risk



CONFOUNDING EFFECTS



Association between height and score of maths
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Both height and ability of maths increase with age
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Age is a confounding factor in the 9

association between height and
ability of maths.
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After age-adjustment, there is no association

between height and score of maths
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We use multivariable analysis to 9@

adjust the effect of confounding
factor(s), age in this case. m—J
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Regression models for multivariable analysis

No Continuous Linear regression model
Binomial Logistic regression model
Categorical (23) Multinomial (polytomous)

logistic regression model
Binomial (event) Cox proportional hazard
with censoring model

Yes Continuous Mixed effect model,

Generalized estimating
equation

Categorical (=3) Generalized estimating
equation




LINEAR REGRESSION ANALYSIS



Results of regression analysis before
adjusting the effect of age

Source | SS df MS Number of obs = 32
------------- + F(1, 30) = 726.87

Model | 412.7743 1 412.774322 Prob > F = 0.0000

Residual | 17.0365 30 .567882354 R-squared = 0.9604

------------- B Adj R-squared = 0.9590

Total | 429.8108 31 13.8648643 Root MSE = .75358
Ability score of maths

ama| Coef. Std. Err. P>[t|] [95% Conf. Interval]

_____________ F e ——————

height | .4118029 .0152743 26.96 0.000 .3806086 .4429973
_cons | -42.82525 2.191352 -19.54 0.000 -47.30059 -38.34992
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Significant association between height

and the ability of maths was gone after
adjusting for the effect of age

Source | SS df MS Number of obs = 32
------------- B et F(2, 29) = 851.23
Model | 422.6119 2 211.305972 Prob > F = 0.0000
Residual | 7.19885 29 .248236138 R-squared = 0.9833
------------- B e Adj R-squared = 0.9821
Total | 429.81079 31 13.8648643 Root MSE = .49823
The coefficient was 0.411 before adjustment
ama|  Coef. Std. Err. P>[t|] [95% Conf. Interval]
_____________ o e e e e e e e 1 e e e et e et e et e et e e e et e et e e et e e et e et e e e e et e e e e e e e e e o

height | -.0121303 .0680948 -0.18 0.860 -.1513998 .1271393
age | 2.02461 3216095 6.30 0.000 1.366845 2.682375
_cons| 1.483038 7.185946 0.21 0.838 -13.21387 16.17995



"
How age itself influences the association
between height and the ability of maths?

Let's see the equation
Ability of maths (AM) = o + B1(Height)
— AM = -42.8 + 0.41(Height)
0.41 points increase by 1cm increase of height
AM = o + B1(Height) + B2(Age)
— AM = 1.48 - 0.01(Height) + 2.02 (Age)

0.01 points decrease by 1cm increase of height

Confounding effect: magnitude and direction of the association



ANOVA table
Sum of Degrees Mean sum of F statistic
Squares of freedom | squares (SS/df) (dfm, dfr)
P value of F test
Source | SS df MS Number ¢ obs = 32
------------- oo F(2, 29) = 851.23
Model | 422.6119 2 211.305972 Prob > F = 0.0000
Residual | 7.19885 29 .248236138 R-squared = 0.9833
------------- e Adj R-squared = 0.9821
Total | 429.81079 31 13.8648643 Root MSE = .49823
t = Coef. / SE P value (H,: coef.=0)
ama|  Coef. Std. Err. P>[t|] [95% Conf. Intervall
_____________ e C] Of CoEf.
height | -.0121303 .0680948 -0.18 0.860 -.1513998 .1271393
age | 2.02461 3216095 6.30 0.000 1.366845 2.682375
_cons| 1.483038 7.185946 0.21 0.838 -13.21387 16.17995



" J
Interpretation of coefficients in general

To simplify, the explanatory variable is
binomial one: 1=exposed or 0=unexposed

Exposed: Ye =a + B(Exp=1)=a + B
Unexposed: Yu = o + B(Exp=0) = o
Difference: Ye—Yu =3

m Coefficient estimate: difference in
dependent value



"
Interpretation of coefficients after
log-transformation of dependent variable

The explanatory variable is binomial one:
1=exposed or 0=unexposed

Exposed: In (Ye)=o + B(Exp=1)=a +
Unexposed: In (Yu) = a + B(Exp=0) = a
Difference: In(Ye) —In (Yu) = B

Ratio: Ye/Yu=¢ePb log (Ye/Yu)

m Coefficient estimate: ratio of dependent
value (after exponentiating)



NOTES ON PERFORMING
A REGRESSION ANALYSIS



"
Control of confounding with
regression mode|

m Compared to stratified analysis, several
confounding variables can be easily ;7

CHC
controlled simultaneously using a v@
multivariable regression model.

m Results from the regression model are
readily susceptible to bias if the mode'
IS not a good fit to the data. @@
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In a regression analysis, however,
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Two parallel lines
are extrapolated,
even for non-
overlapping age
groups. As a result,
the regression
analysis would
result that there is
a difference in the
outcome between
the exposed and
non-exposed
groups.




If the truth was like in this graph, no linear
association between age and outcome
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LOGISTIC REGRESSION
ANALYSIS



"
Logistic regression analysis

m Logistic regression is used to model the
probability of a binary response as a
function of a set of variables thought to
possibly affect the response (called
covariates).

-1: case (with the disease)

Y =

-0: control (no disease)



"
One could imagine trying to fit a linear model
(since this is the simplest model !) for the
probabilities, but often this leads to problems:
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In a linear model, fitted probabilities can fall outside
of 0 to 1. Because of this, linear regression models
are seldom used to fit probabilities.




In a logistic regression analysis, the logit of
the probability is modeled, rather than the
probability itself.

P = probability of getting disease (0~1)

logit (p)=log |

This transformation
allows us to use a linear
model.

As always, we use the natural log.
The logit is therefore the log odds, since odds =p / (1-p)



"
Logistic regression model

Now, we have the same function with linear
regression model in the right side.

— —_—

PX
logit (px) = log =o+ X
1 =px_
where px = probability of event for a given value x,

and o and 3 are unknown parameters to be estimated
from the data.

— Multivariable analysis is applicable to adjust the
effect of confounding factor.
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Interpretation of coefficients of logistic
regression model

The explanatory variable is binomial one:
1=exposed or 0=unexposed

Exposed: log (Oe) =a + B(Exp=1)=a +
Unexposed: log (Ou) = a + B(Exp=0) = a
Difference: log(Oe) — log (Ou) =

Odds ratio;: Oe / Ou=¢e?# log (Oe/Ou)

m Coefficient estimate: Odds ratio (after
exponentiating)



STRATEGY FOR CONSTRUCTING
REGRESSION MODELS
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Basic principles

1. Stratified analysis should be done first.

2. Determine which confounders to *
include in your model.

3. Estimate the shape of the exposure-
disease relation.

Dose-response relation
4. Evaluate interaction(s)
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How to determine confounders: v
data-dependent manner

1. Start with a set of predictors of outcome
based on the strength of their relation to
the outcome.

2. Build a model by introducing predictor
variables one at a time: check the amount
of change in the coefficient of the
exposure term

> 10% change: include it as a confounder




Example of a confounder (age)

Ability of maths (AM) = o + B1(Height)
— AM = -42.8 + 0.41 Height)

> 10% change
AM = o + B1(Height) +32(Age)
— AM = 1.48 - 0.01(Height) + 2.02 (Age)



"
How to determine confounders: *
data-independent manner

Some researchers argue that

“Without data analysis, decide
confounders, important risk factors of
the outcome, based on the previous
studies.”

If there are few studies, how can we know

How can we pick-up “important risk factors”? S
confounders? 2



MAJOR PROBLEMS OF
REGRESSION MODELS



"
Overfitting

m The phenomenon of overfitting in
regression models is caused by trying to
estimate too many parameters from too
few samples.

m An overfit model result in misleading
regression coefficients, p-values, and R-
squared statistics.



"
Solution of overfitting

m [he best solution to an overfitting problem
IS avoidance.

m |[dentify the important variables carefully,
and think about the model that you are
likely to specity, then, plan ahead to collect
a sample large enough handle all
predictors, interactions, and polynomial
terms your response variable might
require.
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How many explanatory variables
(predictors) can we use in a model?

Linear regression Sample size / 15 Up to around 6-7

model variables in 100
subjects
Logistic regression Smaller sample Up to 10 variables if
model size of outcome / the numbers of
10 cases and controls

are 100 and 300,
respectively.

Cox proportional The number of Up to 9 variables if
hazard model event/ 10 you have 90 events
out of 150 subjects
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ATTENTION!

m \When you include a categorical variable
in your model, you have to count that as
“the number of categories — 1°.

For example, the variable of age group used in
the previous practice, we have to count it as
“two” (=3 categories -1) variables.



MULTICOLLINEARITY



"
Multicollinearity

m A state of very high intercorrelations or
inter-associations among the independent
variables.

m This is a kind of disorder of the data, and
statistical inferences about the data may
NOT be reliable if multicollinearity exists.
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The reasons why multicollinearity occurs

m An inaccurate use of dummy
variables.

m [ he inclusion of a variable which iIs
computed from other variables in
the data set.

m [ he repetition of the same kind of
variable.
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How to detect multicollinearity

m Simple addition or removal of a variable
to or from the regression model

If you observe a dramatic change in the
model, it indicates the presence of
multicollinearity in the data.

m Variance Inflation Factor (VIF)

If the value of VIF 10 and above, then the
multicollinearity is problematic.




PROPENSITY SCORE
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If you cannot recruit enough
sample size

m Calculate “propensity score” which can be
used for adjustment of confounding effects.

Aspirin Use and All-Cause Mortality
Among Patients Being Evaluated for Known

or Suspected Coronary Artery Disease
A Propensity Analysi

Yok oy 1 '
Patricia A. Gum, MDD Context Although aspirin has been shown to reduce cardiovascular morbidity and

Maran Thamilarasan, MD short-term mortality following acute myocardial infarction, the association between
Junko Watanabe. MD its use and long-term all-cause mortality has not been well defined.

Eurene H. Blackstone. MD Objectives To determine whether aspirin is associated with a mortality benefit in
ug M— i stable patients with known or suspected coronary disease and to identify patient char-
Michael S. Lauer, MD acteristics that predict the maximum absolute mortality benefit from aspirin.




Table 1. Baseline and Exercise Characteristics According to Aspirin Use*

Aspinn As-':n?rin P
Vanable (n = 2310) (n = 3864) Value
Demographecs G
Age, mean (S0O), y 62 (11) 56 (12) =2 001
Men, No. (36) . 2167 (56) = 001
CIIHE‘?E!E%?ND. () AI mOSt a” prognOStIC 432 1(17) =2 00
Hypertension, Mo. (%) ( — ) 1569 (41) =2 001
Tobacco use, No. (35) faCtorS n 28 are &S00 (13) 001
o ooy ey F@lated to aspirin use! o oo
Prior coronary artery by, N . N == 001
Pnor percutanecus coronary miervention, No. (9¢) 667 (29) 148 IIEN =2 001
Prior Q-wawve M, No. (36) 369 [16) 285 (7) =1 =001
Adrial fibnllation, No. (55) 27 (1) 55 (1) 04
Congestive heart failure, Mo. (3) 127 (6) 178 (5) 1z
Medicaton use
Chgoxin use, No. (35) 171 (7) 216 (B) 004
B-Blocker use., No. (9G) 811 (35) 550 (14) =2 001
Ciltizzemiverapamil use, No. (35) 452 (20) 405 (1) =2 001
Mifedipine use, No. (%) 261 (11) 283 (7) =2 001
Lipid-lowering therapy. No. (96) 775 (34) 380 (10) <2001
ACE inhibitor use, No. (%6) 349 (15) 4417 (17) =2 001
Cardiovascular assessment and exercise capacity
Body mass index. mean (3D0). kg/m® 29 (5) 30(7) =2 001
Epection fracbon, mean (SD). % 50 (9) 53 (7 =2 001
Resting heart rate, mean (S0), beats/mmn 74 (13) 79 (14) <= 00

M i L e e e T BN



Table 3. Selected Baseline and Exerclse Characterstics Accordin

Use In Propensity-Matched Patients®

After matching by propensity score, the
distribution of prognostic factors are similar
between aspirin users and non-users.

Sy

As-plnn
Vanable {n = 13-51} (n =1351) ‘h"ﬂlue
Demographics )
Age, mean (S0), y 60 (11) 61 (17) 16
Men, No. (%) 951 (70) 974 (72) 33
Chrcal history
Diabetes, No. (%) 203 (15) 207 (15) 83
Hypertension, No. (56 679 (50) 698 (52) A6
Tobacco use, No. (%) 161 (12) 162 (12) 95
Cardiac vanables
Pnor coronary artery disease, No. (%) 652 (48) 659 (49) 79
Prnor coronary artery bypass graft, No. (%) 251 (19) 235 (17) 42
Prnor percutanecus coronary ntervention, No. (%) 166 (12) 147 (17) 25
Prior Q-wave M1, No. (36) 194 (14) 206 (15) 52
Atrial fibrllation, No. (%) 21 (2] 24 (2) 65
Congestve heart failure, No. (%) 79 (6 a9 (7) 43




— USU3Ily, yOu dO
Table 4. Cox Proportional Hazards Analyses = not need to adjust

of Aspirin Use and Mortality Among -
Propensity-Matched Patients (n = 2702)” any variables after

matching by
Hazard » . propensity score
Model 95%Cl)  Valus

Unadjusted 0.53 (0.38-0.74) .002
| Adjusted for propensity 0.53 (0.38-0.74) <.001 5

Adjusted for propensity 0.59 (0.42-0.83) .002

and selected Same results by
variablest _ _

Adjusted for propensity 0.56 (0.40-0.78) <.001 | adjusting for PS
EHICE e GONRTEe =» indicating the

*Clindicates confidence interval. . .
tSelected variables induded prior coronary artery disease, rObUSt resu It N th IS
prior coronary artery bypass grafting, prior percutane- StU d
ous intervention, and ejection fraction =40%. y
{For a list of covariates, see lable 2 footnote (1).




