

Multivariable analysis: A brief introduction

Chihaya Koriyama Department of Epidemiology & Preventive Medicine Kagoshima University January 7th, 2021

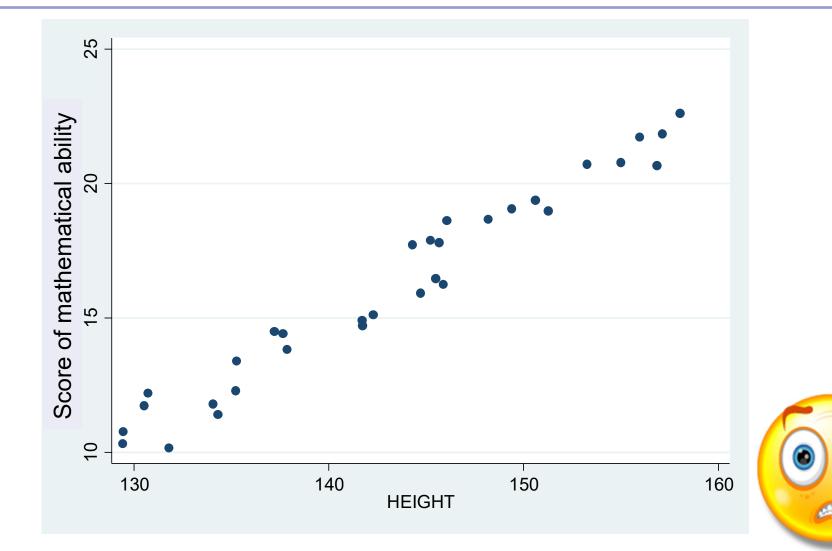
Why do we need multivariable analysis?

Treatment "for the confounding effects at analytical level
 Stratification by confounder(s)
 Multivariable / multiple analysis

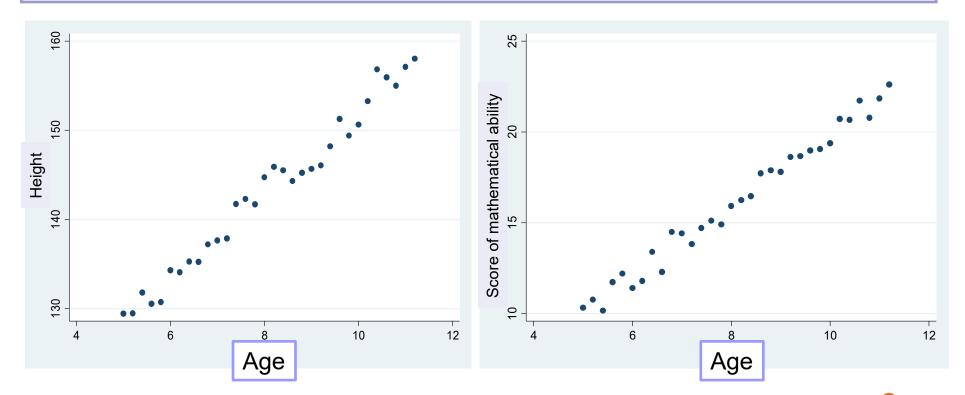
Prediction of individual risk

CONFOUNDING EFFECTS

Association between height and score of maths



Both height and ability of maths increase with age



Age is a confounding factor in the association between height and ability of maths.

After age-adjustment, there is no association between height and score of maths



Regression models for multivariable analysis

Paired?	Outcome variable	Proper model
No	Continuous	Linear regression model
	Binomial	Logistic regression model
	Categorical (≥3)	Multinomial (polytomous) logistic regression model
	Binomial (event) with censoring	Cox proportional hazard model
Yes	Continuous	Mixed effect model, Generalized estimating equation
	Categorical (≥3)	Generalized estimating equation

LINEAR REGRESSION ANALYSIS

Results of regression analysis before adjusting the effect of age

Source SS	df MS	Number of obs = 32 F(1, 30) = 726.87		
-	1 412.774322 30 .567882354	Prob > F = 0.0000 R-squared = 0.9604 Adj R-squared = 0.9590		
Total 429.8108	31 13.8648643	Root MSE = $.75358$		
Ability score of maths				
	Std. Err. t P> t	[95% Conf. Interval]		
	.015274326.960.0002.191352-19.540.000	.3806086 .4429973 -47.30059 -38.34992		

Significant association between height and the ability of maths was gone after adjusting for the effect of age

Source SS +					of obs = 32 = 851.23	
Model 422.6119 Residual 7.19885	2 211.30 29 .24823	5972 6138		Prob > F R-square		
Total 429.81079 31 13.8648643				Root MSE = $.49823$		
The coefficient was 0.411 before adjustment						
ama Coef.	Std. Err	. t	P> t	[95% Conf	. Interval]	
height 0121303 age 2.02461 _cons 1.483038	.0680948 .3216095 7.185946		0.860 0.000 0.838	1513998 1.366845 -13.21387		

How age itself influences the association between height and the ability of maths?

Let's see the equation

Ability of maths (AM) = α + β 1(Height)

 \rightarrow AM = -42.8 + **0.41**(Height)

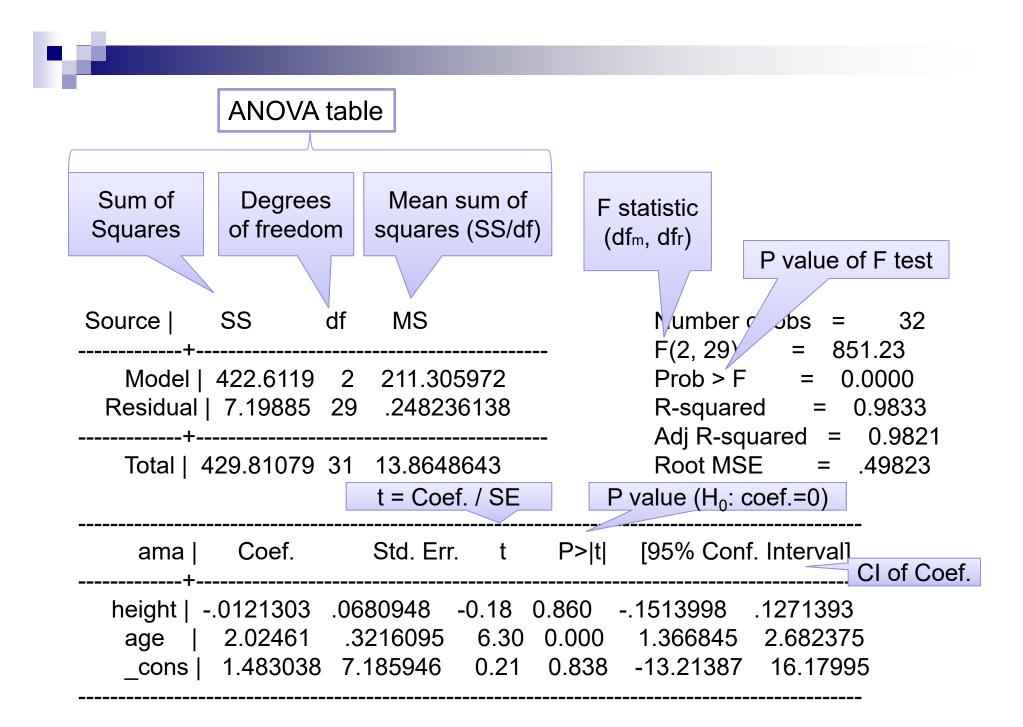
0.41 points increase by 1cm increase of height

 $AM = \alpha + \beta 1(\text{Height}) + \beta 2(\text{Age})$

 \rightarrow AM = 1.48 - 0.01(Height) + 2.02 (Age)

0.01 points decrease by 1cm increase of height

Confounding effect: magnitude and direction of the association



Interpretation of coefficients in general

To simplify, the explanatory variable is binomial one: 1=exposed or 0=unexposed

- Exposed: Ye = α + β (Exp=1) = α + β Unexposed: Yu = α + β (Exp=0) = α Difference: Ye - Yu = β
- Coefficient estimate: difference in dependent value

Interpretation of coefficients after log-transformation of dependent variable

The explanatory variable is binomial one: 1=exposed or 0=unexposed

Exposed: In (Ye) = α + β (Exp=1) = α + β Unexposed: In (Yu) = α + β (Exp=0) = α Difference: In(Ye) – In (Yu) = β Ratio: Ye / Yu = e^{β} log (Ye/Yu)

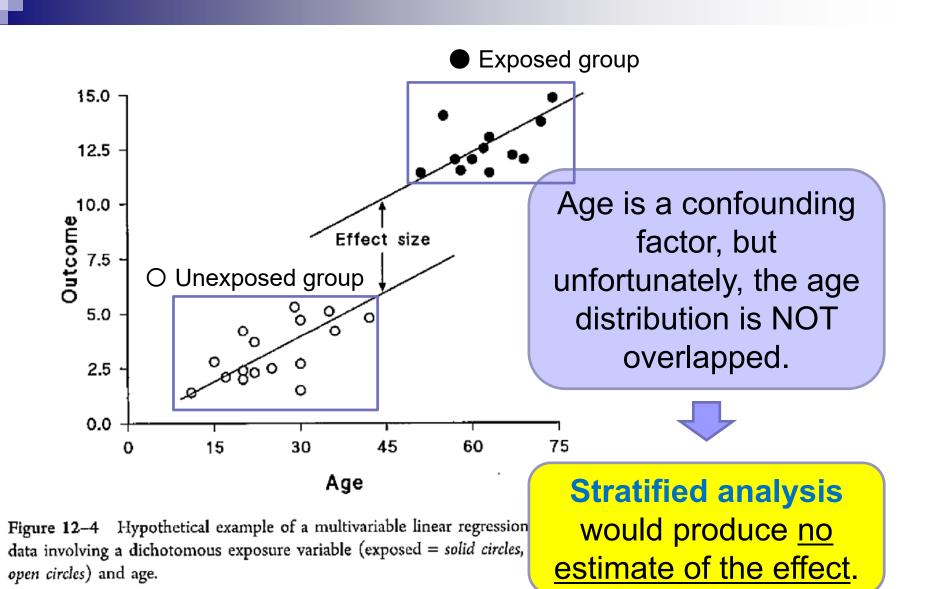
Coefficient estimate: ratio of dependent value (after exponentiating)

NOTES ON PERFORMING A REGRESSION ANALYSIS

Control of confounding with regression model

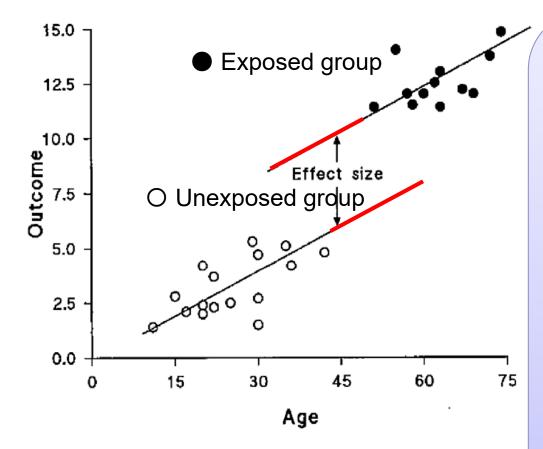
Compared to stratified analysis, several confounding variables can be <u>easily</u> <u>controlled simultaneously</u> using a multivariable regression model.

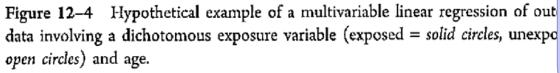
Results from the regression model are readily <u>susceptible to bias</u> if the model is not a good fit to the data.



Epidemiology (Rothman KJ, Oxford University Press)

In a regression analysis, however,

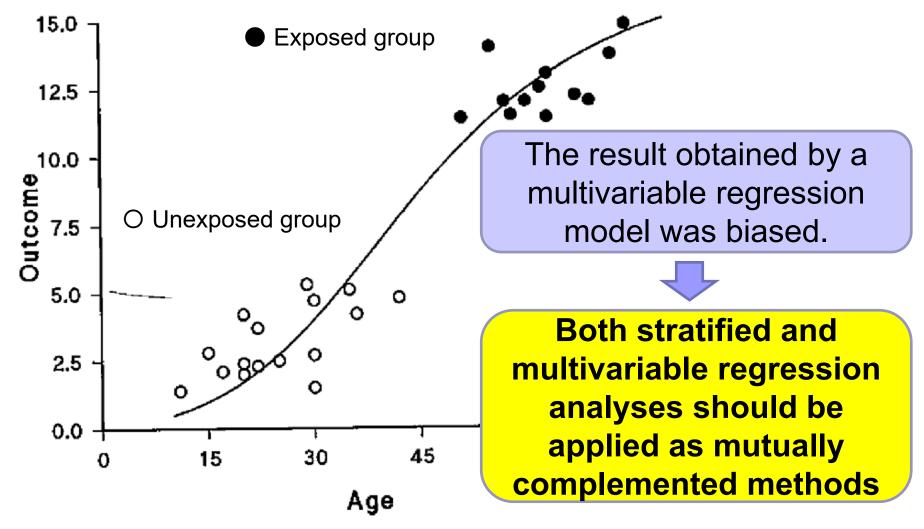




Epidemiology (Rothman KJ, Oxford University Press)

Two parallel lines are extrapolated, even for nonoverlapping age groups. As a result, the regression analysis would result that there is a difference in the outcome between the exposed and non-exposed groups.

If the truth was like in this graph, no linear association between age and outcome



Epidemiology (Rothman KJ, Oxford University Press)

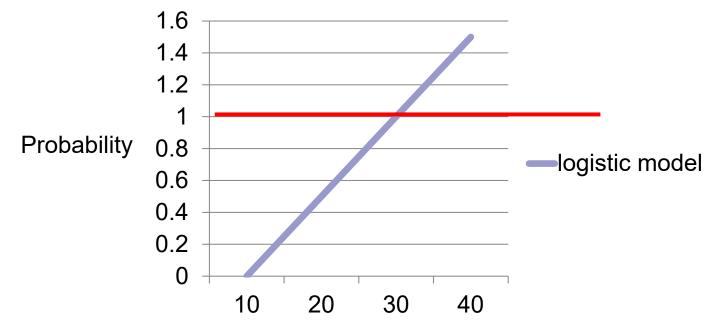
LOGISTIC REGRESSION ANALYSIS

Logistic regression analysis

Logistic regression is used to model <u>the</u> <u>probability of a binary response</u> as a function of a set of variables thought to possibly affect the response (called covariates).

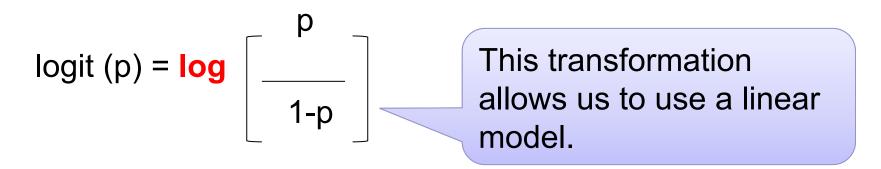
Y =
$$\begin{cases} 1: \text{ case (with the disease} \\ 0: \text{ control (no disease)} \end{cases}$$

One could imagine trying to fit <u>a linear model</u> (since this is the simplest model !) for the probabilities, but often this leads to problems:



In a linear model, fitted probabilities can fall <u>outside</u> of 0 to 1. Because of this, linear regression models are seldom used to fit probabilities. In a logistic regression analysis, the **logit** of the probability is modeled, rather than the probability itself.

P = probability of getting disease $(0 \sim 1)$



As always, we use the natural log.

The logit is therefore **the log odds**, since odds = p / (1-p)

Logistic regression model

Now, we have the same function with linear regression model in the right side.

logit (px) = log
$$\begin{bmatrix} px \\ ---- \\ 1 - px \end{bmatrix} = \alpha + \beta x$$

where **px = probability of event for a given value x**, and α and β are unknown parameters to be estimated from the data.

 \rightarrow Multivariable analysis is applicable to adjust the effect of confounding factor.

Interpretation of coefficients of logistic regression model

The explanatory variable is binomial one: 1=exposed or 0=unexposed

Exposed: $\log (O_e) = \alpha + \beta (Exp=1) = \alpha + \beta$ Unexposed: $\log (O_u) = \alpha + \beta (Exp=0) = \alpha$ Difference: $\log(O_e) - \log (O_u) = \beta$ Odds ratio: $O_e / O_u = e^{\beta}$ log (Oe/Ou)

Coefficient estimate: Odds ratio (after exponentiating)

STRATEGY FOR CONSTRUCTING REGRESSION MODELS

Basic principles

- 1. <u>Stratified analysis should be done first.</u>
- 2. Determine which **confounders to include** in your model.
- 3. Estimate the shape of the exposuredisease relation.

Dose-response relation

4. Evaluate interaction(s)

How to determine confounders: data-dependent manner

- 1. Start with a set of predictors of outcome based on the strength of their relation to the outcome.
- 2. Build a model by introducing predictor variables one at a time: check the amount of change in the coefficient of the exposure term
 - > 10% change: include it as a confounder

Example of a confounder (age)

Ability of maths (AM) = α + β 1(Height) \rightarrow AM = -42.8 + 0.41(Height) > 10% change AM = α + β 1(Height) + β 2(Age) \rightarrow AM = 1.48 - 0.01(Height) + 2.02 (Age) How to determine confounders: data-independent manner

Some researchers argue that "<u>Without data analysis</u>, decide confounders, important risk factors of the outcome, based on the previous studies."

How can we pick-up "important risk factors"? If there are few studies, how can we know confounders?

MAJOR PROBLEMS OF REGRESSION MODELS

Overfitting

- The phenomenon of overfitting in regression models is caused by trying to estimate too many parameters from too few samples.
- An overfit model result in misleading regression coefficients, p-values, and Rsquared statistics.

Solution of overfitting

- The best solution to an overfitting problem is <u>avoidance</u>.
- Identify the important variables carefully, and think about the model that you are likely to specify, then, plan ahead to collect a sample large enough handle all predictors, interactions, and polynomial terms your response variable might require.

How many explanatory variables (predictors) can we use in a model?

Model	Number of explanatory variables	Example
Linear regression model	Sample size / 15	<u>Up to around 6-7</u> variables in 100 subjects
Logistic regression model	Smaller sample size of outcome / 10	<u>Up to 10 variables if</u> the numbers of cases and controls are 100 and 300, respectively.
Cox proportional hazard model	The number of event / 10	<u>Up to 9 variables if</u> you have 90 events out of 150 subjects

ATTENTION!

When you include a categorical variable in your model, you have to count that as "the number of categories – 1".

For example, the variable of age group used in the previous practice, we have to count it as "two" (=3 categories -1) variables.

MULTICOLLINEARITY

Multicollinearity

- A state of very high intercorrelations or inter-associations among the independent variables.
- This is a kind of disorder of the data, and statistical inferences about the data may NOT be reliable if multicollinearity exists.

The reasons why multicollinearity occurs

- An inaccurate use of <u>dummy</u> <u>variables</u>.
- The inclusion of a variable which is <u>computed from other variables in</u> <u>the data set</u>.
- The repetition of the same kind of variable.

How to detect multicollinearity

- Simple addition or removal of a variable to or from the regression model
 - If you observe <u>a dramatic change in the</u> <u>model</u>, it indicates the presence of multicollinearity in the data.
- Variance Inflation Factor (VIF)
 - □ If the value of <u>VIF 10 and above</u>, then the multicollinearity is problematic.

PROPENSITY SCORE

If you cannot recruit enough sample size

Calculate "propensity score" which can be used for adjustment of confounding effects.

Example

Aspirin Use and All-Cause Mortality Among Patients Being Evaluated for Known or Suspected Coronary Artery Disease

A Propensity Analysis

Patricia A. Gum, MD Maran Thamilarasan, MD Junko Watanabe, MD Eugene H. Blackstone, MD Michael S. Lauer, MD

Context Although aspirin has been shown to reduce cardiovascular morbidity and short-term mortality following acute myocardial infarction, the association between its use and long-term all-cause mortality has not been well defined.

Objectives To determine whether aspirin is associated with a mortality benefit in stable patients with known or suspected coronary disease and to identify patient characteristics that predict the maximum absolute mortality benefit from aspirin.

 Table 1. Baseline and Exercise Characteristics According to Aspirin Use*

Variable	Aspirin (n = 2310)	No Aspirin (n = 3864)	P Value
Demographics Age, mean (SD), y	62 (11)	56 (12)	<.001
Men, No. (%)		2167 (56)	<.001
Clinical history Diabetes, No. (%) Almost all pro	gnostic	432 (11)	<.001
Hypertension, No. (%) factors (n=2	8) are	1569 (41)	<.001
TODACCO USC, NO. (76)	,	500 (13)	.001
Prior coronary artery related to aspi	irin usel	778 (20)	<.001
Prior coronary artery by		2 49	<.001
Prior percutaneous coronary intervention, No. (%)	667 (29)	148 (4)	<.001
Prior Q-wave MI, No. (%)	369 (16)	285 (7)	<.001
Atrial fibrillation, No. (%)	27 (1)	55 (1)	.04
Congestive heart failure, No. (%)	127 (6)	178 (5)	.12
Medication use			
Digoxin use, No. (%)	171 (7)	216 (6)	.004
β-Blocker use, No. (%)	811 (35)	550 (14)	<.001
Diltiazem/verapamil use, No. (%)	452 (20)	405 (10)	<.001
Nifedipine use, No. (%)	261 (11)	283 (7)	<.001
Lipid-lowering therapy, No. (%)	775 (34)	380 (10)	<.001
ACE inhibitor use, No. (%)	349 (15)	441 (11)	<.001
Cardiovascular assessment and exercise capacity Body mass index, mean (SD), kg/m ²	29 (5)	30 (7)	<.001
Ejection fraction, mean (SD), %	50 (9)	53 (7)	<.001
Resting heart rate, mean (SD), beats/min	74 (13)	79 (14)	<.001
Denting Line descention and (CD) and Up		867 - 188	

After matching by propensity score, the distribution of prognostic factors are similar between aspirin users and non-users.

Table 3. Selected Baseline and Exercise Characteristics According to Aspn. Use in Propensity-Matched Patients*

	Aspirin	No Aspirin	Р
Variable	(n = 1351)	(n = 1351)	Value
Demographics	00 (11)	ca (aa)	
Age, mean (SD), y	60 (11)	61 (11)	.16
Men, No. (%)	951 (70)	974 (72)	.33
Clinical history			
Diabetes, No. (%)	203 (15)	207 (15)	.83
Hypertension, No. (%)	679 (50)	698 (52)	.46
Tobacco use, No. (%)	161 (12)	162 (12)	.95
Cardiac variables			
Prior coronary artery disease, No. (%)	652 (48)	659 (49)	.79
Prior coronary artery bypass graft, No. (%)	251 (19)	235 (17)	.42
Prior percutaneous coronary intervention, No. (%)	166 (12)	147 (11)	.25
Prior Q-wave MI, No. (%)	194 (14)	206 (15)	.52
Atrial fibrillation, No. (%)	21 (2)	24 (2)	.65
Congestive heart failure, No. (%)	79 (6)	89 (7)	.43

Usually, you do Table 4. Cox Proportional Hazards Analyses not need to adjust of Aspirin Use and Mortality Among any variables after Propensity-Matched Patients $(n = 2702)^*$ matching by Hazard propensity score Ratio P Model (95% CI) Value .002 Unadjusted 0.53 (0.38-0.74) Adjusted for propensity 0.53 (0.38-0.74) <.001 Adjusted for propensity 0.59 (0.42-0.83) .002 and selected Same results by variables[†] adjusting for PS Adjusted for propensity 0.56 (0.40-0.78) <.001 and all covariates[‡] \rightarrow indicating the *Cl indicates confidence interval. robust result in this +Selected variables included prior coronary artery disease, prior coronary artery bypass grafting, prior percutanestudy ous intervention, and ejection fraction \leq 40%. ‡For a list of covariates, see Table 2 footnote (†).